Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios
نویسندگان
چکیده
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.
منابع مشابه
Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America
Nitellopsis obtusa (starry stonewort) is a dioecious green alga native to Europe and Asia that has emerged as an aquatic invasive species in North America. Nitellopsis obtusa is rare across large portions of its native range, but has spread rapidly in northern-tier lakes in the United States, where it can interfere with recreation and may displace native species. Little is known about the invas...
متن کاملThe effects of climate change on the distribution of an invasive fish in Iran: Gambusia holbrooki (Girard, 1859)
Today, invasive species are considered as one of the major threats to biodiversity and ecosystem functions. The suitable habitats of these species are expected to be expanded under the effects of future climate change hence it is likely to threaten the existence of native species. Consequently, identifying the current and potential distribution range of invasive species is essential for managem...
متن کاملModeling Current and Future Potential Distributions of Caspian Pond Turtle (Mauremys caspica) under Climate Change Scenarios
Although turtles are the most threatened taxonomic group within the reptile class, we have a very limited understanding of how turtles respond to climate change. Here, we evaluated the effects of climate changes on the geographical distribution of Caspian pond turtle (Mauremys caspica). We used an ensemble approach by combining six species distribution models including artificial neural network...
متن کاملIncreasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change
BACKGROUND Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to inv...
متن کاملUntangling climate and water chemistry to predict changes in freshwater macrophyte distributions
Forecasting changes in the distributions of macrophytes is essential to understanding how aquatic ecosystems will respond to climate and environmental changes. Previous work in aquatic ecosystems has used climate data at large scales and chemistry data at small scales; the consequence of using these different data types has not been evaluated. This study combines a survey of macrophyte diversit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017